12 research outputs found

    Impact of time-variant turbulence behavior on prediction for adaptive optics systems

    Get PDF
    For high contrast imaging systems, the time delay is one of the major limiting factors for the performance of the extreme adaptive optics (AO) sub-system and, in turn, the final contrast. The time delay is due to the finite time needed to measure the incoming disturbance and then apply the correction. By predicting the behavior of the atmospheric disturbance over the time delay we can in principle achieve a better AO performance. Atmospheric turbulence parameters which determine the wavefront phase fluctuations have time-varying behavior. We present a stochastic model for wind speed and model time-variant atmospheric turbulence effects using varying wind speed. We test a low-order, data-driven predictor, the linear minimum mean square error predictor, for a near-infrared AO system under varying conditions. Our results show varying wind can have a significant impact on the performance of wavefront prediction, preventing it from reaching optimal performance. The impact depends on the strength of the wind fluctuations with the greatest loss in expected performance being for high wind speeds.Comment: 10 pages, 8 figures; Accepted to JOSA A March 201

    Battle of the Predictive Wavefront Controls: Comparing Data and Model-Driven Predictive Control for High Contrast Imaging

    Full text link
    Ground-based high contrast exoplanet imaging requires state-of-the-art adaptive optics (AO) systems in order to detect extremely faint planets next to their brighter host stars. For such extreme AO systems (with high actuator count deformable mirrors over a small field of view), the lag time of the correction (which can impact our system by the amount the wavefront has changed by the time the system is able to apply the correction) which can be anywhere from ~1-5 milliseconds, can cause wavefront errors on spatial scales that lead to speckles at small angular separations from the central star in the final science image. One avenue for correcting these aberrations is predictive control, wherein previous wavefront information is used to predict the future state of the wavefront in one-system-lag's time, and this predicted state is applied as a correction with a deformable mirror. Here, we consider two methods for predictive control: data-driven prediction using empirical orthogonal functions and the physically-motivated predictive Fourier control. The performance and robustness of these methods have not previously been compared side-by-side. In this paper, we compare these predictors by applying them as post-facto methods to simulated atmospheres and on-sky telemetry, to investigate the circumstances in which their performance differs, including testing them under different wind speeds, C_n^2 profiles, and time lags. We also discuss future plans for testing both algorithms on the Santa Cruz Extreme AO Laboratory (SEAL) testbed

    SHIMM as an atmospheric profiler on the Nickel Telescope

    Full text link
    Optimal atmospheric conditions are beneficial for detecting exoplanets via high contrast imaging (HCI), as speckles from adaptive optics' (AO's) residuals can make it difficult to identify exoplanets. While AO systems greatly improve our image quality, having access to real-time estimates of atmospheric conditions could also help astronomers use their telescope time more efficiently in the search for exoplanets as well as aid in the data reduction process. The Shack-Hartmann Imaging Motion Monitor (SHIMM) is an atmospheric profiler that utilizes a Shack-Hartmann wavefront sensor to create spot images of a single star in order to reconstruct important atmospheric parameters such as the Fried parameter (r0r_0), Cn2C_n^2 profile and coherence time. Due to its simplicity, the SHIMM can be directly used on a telescope to get in situ measurements while observing. We present our implementation of the Nickel-SHIMM design for the one meter Nickel Telescope at Lick Observatory. We utilize an HCIPy simulation of turbulence propagating across a telescope aperture to verify the SHIMM data reduction pipeline as we begin on-sky testing. We also used on-sky data from the AO system on the Shane Telescope to further validate our analysis, finding that both our simulation and data reduction pipeline are consistent with previously determined results for the Fried parameter at the Lick Observatory. Finally, we present first light results from commissioning of the Nickel-SHIMM.Comment: Conference Proceedings for 2023 SPIE Optics and Photonics, Techniques and Instrumentation for Detection of Exoplanets X

    Using the Gerchberg-Saxton algorithm to reconstruct non-modulated pyramid wavefront sensor measurements

    Full text link
    Adaptive optics (AO) is a technique to improve the resolution of ground-based telescopes by correcting, in real-time, optical aberrations due to atmospheric turbulence and the telescope itself. With the rise of Giant Segmented Mirror Telescopes (GSMT), AO is needed more than ever to reach the full potential of these future observatories. One of the main performance drivers of an AO system is the wavefront sensing operation, consisting of measuring the shape of the above mentioned optical aberrations. Aims. The non-modulated pyramid wavefront sensor (nPWFS) is a wavefront sensor with high sensitivity, allowing the limits of AO systems to be pushed. The high sensitivity comes at the expense of its dynamic range, which makes it a highly non-linear sensor. We propose here a novel way to invert nPWFS signals by using the principle of reciprocity of light propagation and the Gerchberg-Saxton (GS) algorithm. We test the performance of this reconstructor in two steps: the technique is first implemented in simulations, where some of its basic properties are studied. Then, the GS reconstructor is tested on the Santa Cruz Extreme Adaptive optics Laboratory (SEAL) testbed located at the University of California Santa Cruz. This new way to invert the nPWFS measurements allows us to drastically increase the dynamic range of the reconstruction for the nPWFS, pushing the dynamics close to a modulated PWFS. The reconstructor is an iterative algorithm requiring heavy computational burden, which could be an issue for real-time purposes in its current implementation. However, this new reconstructor could still be helpful in the case of many wavefront control operations. This reconstruction technique has also been successfully tested on the Santa Cruz Extreme AO Laboratory (SEAL) bench where it is now used as the standard way to invert nPWFS signal

    Integrated photonic-based coronagraphic systems for future space telescopes

    Full text link
    The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 10^-10 contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.Comment: Conference Proceedings of SPIE: Techniques and Instrumentation for Detection of Exoplanets XI, vol. 12680 (2023

    Visible extreme adaptive optics on extremely large telescopes: Towards detecting oxygen in Proxima Centauri b and analogs

    Full text link
    Looking to the future of exo-Earth imaging from the ground, core technology developments are required in visible extreme adaptive optics (ExAO) to enable the observation of atmospheric features such as oxygen on rocky planets in visible light. UNDERGROUND (Ultra-fast AO techNology Determination for Exoplanet imageRs from the GROUND), a collaboration built in Feb. 2023 at the Optimal Exoplanet Imagers Lorentz Workshop, aims to (1) motivate oxygen detection in Proxima Centauri b and analogs as an informative science case for high-contrast imaging and direct spectroscopy, (2) overview the state of the field with respect to visible exoplanet imagers, and (3) set the instrumental requirements to achieve this goal and identify what key technologies require further development.Comment: SPIE Proceeding: 2023 / 12680-6

    Predictive wavefront control on Keck II adaptive optics bench: on-sky coronagraphic results

    Full text link
    The behavior of an adaptive optics (AO) system for ground-based high contrast imaging (HCI) dictates the achievable contrast of the instrument. In conditions where the coherence time of the atmosphere is short compared to the speed of the AO system, the servo-lag error can become the dominant error term of the AO system. While the AO system measures the wavefront error and subsequently applies a correction (typically taking a total of one or a few milliseconds), the atmospheric turbulence above the telescope has changed resulting in the servo-lag error. In addition to reducing the Strehl ratio, the servo-lag error causes a build-up of speckles along the direction of the dominant wind vector in the coronagraphic image, severely limiting the contrast at small angular separations. One strategy to mitigate this problem is to predict the evolution of the turbulence over the delay time. Our predictive wavefront control algorithm minimizes, in a mean square sense, the wavefront error over the delay and has been implemented on the Keck II AO bench. In this paper, we report on the latest results of our algorithm and discuss updates to the algorithm itself. We explore how to tune various filter parameters based on both daytime laboratory tests and on-sky tests. We show a reduction in the residual-mean-square wavefront error for the predictor compared to the leaky integrator (the standard controller for Keck) implemented on Keck for three separate nights. Finally, we present contrast improvements for daytime and on-sky tests for the first time. Using the L-band vortex coronagraph for Keck's NIRC2 instrument, we find a contrast gain of up to 2 at a separation of 3 lambda/D and up to 3 for larger separations (3-7 lambda/D).Comment: Accepted to JATIS May 20 2022. 34 pages, 15 Figures. arXiv admin note: substantial text overlap with arXiv:2108.0893

    Functional assessment of mouse complement pathway activities. and quantification of C3b/C3c/iC3b in an experimental model of mouse renal ischaemia/reperfusion injury

    No full text
    The complement system is an essential component of our innate immunity, both for the protection against infections and for proper handling of dying cells. However, the complement system can also contribute to tissue injury and inflammatory responses. In view of novel therapeutic possibilities, there is an increasing interest in measurement of the complement system activation in the systemic compartment, both in the clinical setting as well as in experimental models. Here we describe in parallel a sensitive and specific sandwich ELISA detecting mouse C3 activation fragments C3b/C3c/iC3b, as well as functional complement ELISAs detecting specific activities of the three complement pathways at the level of C3 and at the level of C9 activation. In a murine model of renal ischaemia/reperfusion injury (IRI) we found transient complement activation as shown by generation of C3b/C3c/iC3b fragments at 24 h following reperfusion, which returned to base-line at 3 and 7 days post reperfusion. When the pathway specific complement activities were measured at the level of C3 activation, we found no significant reduction in any of the pathways. However, the functional complement activity of all three pathways was significantly reduced when measured at the level of C9, with the strongest reduction being observed in the alternative pathway. For all three pathways there was a strong correlation between the amount of C3 fragments and the reduction in functional complement activity. Moreover, at 24 h both C3 fragments and the functional complement activities showed a correlation with the rise in serum creatinine. Together our results show that determination of the systemic pathway specific complement activity is feasible in experimental mouse models and that they are useful in Understanding complement activation and inhibition in vivo. (C) 2015 Elsevier B.V. All rights reserved

    Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury

    No full text
    The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR injury; however, the role of C5aR2 in IR injury is less clear as initial studies proposed the hypothesis that C5aR2 functions as a decoy receptor. By Using wild-type, C5aR1(-/-), and C5aR2(-/-) mice in a model of renal IR injury, we found that a deficiency of either of these receptors protected mice from renal IR injury. Surprisingly, C5aR2(-/-) mice were most protected and had lower creatinine levels and reduced acute tubular necrosis. Next, an in vivo migration study demonstrated that leukocyte chemotaxis was unaffected in C5aR2(-/-) mice, whereas neutrophil activation was reduced by C5aR2 deficiency. To further investigate the contribution of renal cell-expressed C5aR2 vs. leukocyte-expressed C5aR2 to renal IR injury, bone marrow chimeras were created. Our data show that both renal cell-expressed C5aR2 and leukocyte-expressed C5aR2 mediate IR-induced renal dysfunction. These studies reveal the importance of C5aR2 in renal IR injury. They further show that C5aR2 is a functional receptor, rather than a decoy receptor, and may provide a new target for intervention
    corecore